Pii: S0378-1119(02)00689-3
نویسندگان
چکیده
The ray-finned fishes (Actinopterygii) seem to have two copies of many tetrapod (Sarcopterygii) genes. The origin of these duplicate fish genes is the subject of some controversy. One explanation for the existence of these extra fish genes could be an increase in the rate of independent gene duplications in fishes. Alternatively, gene duplicates in fish may have been formed in the ancestor of all or most Actinopterygii during a complete genome duplication event. A third possibility is that tetrapods have lost more genes than fish after gene or genome duplication events in the common ancestor of both lineages. These three hypotheses can be tested by phylogenetic reconstruction. Previously, we found that a large number of anciently duplicated genes of zebrafish are sister sequences in evolutionary trees suggesting that they were produced in Actinopterygii after the divergence of Sarcopterygii [Phil. Trans. R. Soc. Lond. B 356 (2001) 119]. On the other hand, several well-supported trees showed one of the two fish genes as the sister sequence to a monophyletic clade that included the second fish gene and genes from frog, chicken, mouse and human. These so-called outgroup topologies suggest that the origin of many fish duplicates predates the divergence of the Sarcopterygii and Actinopterygii and support the hypothesis that tetrapods have lost duplicates that have been retained in fish. Here we show that many of these ‘outgroup’ tree topologies are erroneous and can be corrected when mutational saturation is taken into account. To this end, a Java-based application has been developed to visualize the amount of saturation in amino acid sequences. The program graphically displays the number of observed frequent and rare amino acid replacements between pairs of sequences against their overall evolutionary distance. Discrimination between frequent and rare amino acid replacements is based on substitution probability matrices (e.g. PAM and BLOSUM). Evolutionary distances between sequences can be computed from the fraction of unsaturated sites only and evolutionary trees inferred by pairwise distance methods. When trees are computed by omitting the saturated fraction of sites, most fish duplicates are sister sequences. q 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Pii: S0378-1119(02)00423-7
During the expression of a certain genes standard decoding is over-ridden in a site or mRNA specific manner. This recoding occurs in response to special signals in mRNA and probably occurs in all organisms. This review deals with the function and distribution of recoding with a focus on the ribosomal frameshifting used for gene expression in bacteria. q 2002 Elsevier Science B.V. All rights res...
متن کاملPii: S0378-1119(02)00401-8
SET-domain (SET: Su(var)3-9, E(z) and Trithorax)-containing proteins were collected through sequence searches of the available databases. After removing redundancies, the proteins belonging to three families, SU(VAR)3-9, E(Z) and TRITHORAX, were selected. Analysis of the relationship between the different members is based on pairwise alignment, compilation, and comparison of their SETdomains. T...
متن کاملPii: S0378-1119(02)00701-1
It is known that umuDC-like operons encoding DNA polymerase V are often found in plasmids of gamma-proteobacteria. Here we demonstrate that homologous operons are associated with mobile genomic elements in Gram-positive bacteria as well. Using the comparative analysis of transcriptional regulatory signals, we suggest that genes encoding homologs of UmuC in prophages of Bacillus subtilis and tra...
متن کاملPii: S0378-1119(01)00668-0
The presence of long-range correlations and/or mosaicism in DNA sequences results in GC fluctuations, even within individual isochores that are much larger than expected correlation-free ‘random’ sequences. Neglecting the presence of such fluctuations can lead to incorrect conclusions regarding relative homogeneity or isochore borders. In this commentary, we address these and other methodologic...
متن کاملPii: S0378-1119(02)00408-0
The major antigenic protein 1 (MAP1) of the tick-borne rickettsial pathogen Cowdria ruminantium is encoded by a multigene family containing conserved and variable genes. The part of a locus containing the map1 multigene family that was characterized contained three homologous, but non-identical map1 genes, designated map1-2, map1-1, and map1. Reverse transcriptase-polymerase chain reaction was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002